

Невродинамика
Човешкият мозък е съвършена самонастройваща се система ,
Която се самообучава , за да преведе индивида през всички препятствия
И да го съхрани . Създадените модели на поведение показват при какви дразнения , как реагира нашият организъм.
Невроните с невронните връзки приличат на интернет.
Лекции на Вулфрам Герстнер
https://neuronaldynamics.epfl.ch/
From single neurons to networks and models of cognition
Wulfram Gerstner, Werner M. Kistler, Richard Naud and Liam Paninski
What happens in our brain when we make a decision? What triggers a neuron to send out a signal? What is the neural code? This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience.
CNS1.1 - Neurons and synapses: Overview
https://www.youtube.com/watch?v=f_9UE5P3KCo
- Lecture 1. A first simple neuron model (83 min)
Part 1 - Neurons and Synapses : Overview (10 min)
Part 2 - The Passive Membrane (21 min)
Math detour - Linear differential equation (22 min)
Part 3 - Leaky Integrate-and-Fire Model (8 min)
Part 4 - Generalized Integrate and Fire Models (17 min)
Part 5 - Quality of Integrate-and-Fire Models (5 min) - Lecture 2. The Hodgkin-Huxley model and detailed ion-current based neuron models (77 min)
Part 1 - Biophysics of neurons (5 min)
Part 2 - Reversal potential and Nernst equation (11 min)
Part 3 - Hodgkin-Huxley Model (23 min)
Part 4 - Threshold in the Hodgkin Huxley Model (26 min)
Part 5 - Detailed Biophysical Models (12 min) - Lecture 3. Synapses, dendrites and the cable equation (69 min)
Part 1 - Synapses (15 min)
Part 2 - Synaptic short term plasticity (9 min)
Part 3a - Dendrite as a Cable (11 min)
Part 3b - Derivation of the Cable Equation (10 min)
Part 4 - Cable equation (10 min)
Part 5 - Compartmental Models (14 min) - Lecture 4: Two-dimensional models and phase plane analysis (165 min)
Part 1 - From Hodgkin Huxley to 2D (18 min)
Math detour 1 - Separation of time scales (11 min)
Math detour 2 - Exploiting similarities (16 min)
Part 2 - Phase Plane Analysis (17 min)
Part 3a - Analysis of a 2D neuron model - pulse input (12 min)
Part 3b - Analysis of a 2D neuron model - constant input (9 min)
Math detour 3 - Stability of fixed points (19 min)
Part 4a - Type I and Type II Neuron Models (16 min)
Part 4b - Firing threshold in 2D models (21 min)
Part 5 - Nonlinear Integrate-and-Fire Model (16 min)
II. Generalized Integrate-and-Fire Neurons
- Lecture 5. Variability of spike trains (96 min)
Part 1 - Variability of spike trains (6 min)
Part 2 - Sources of Variability? (10 min)
Part 3a - Three definitions of rate code (12 min)
Part 3b - Poisson Model, survivor function, and interval distribution (15 min)
Math detour - Poisson Process - A modern approach (20 min)
Part 4a - Stochastic spike arrival (15 min)
Part 4b - Membrane potential fluctuations (13 min)
Part 5 - Stochastic spike firing in integrate and fire models (5 min)
Part 1 - Escape noise (15 min)
Part 2 - lnterspike intervals & renewal processes (29 min)
Part 3 - Likelihood of a spike train (18 min)
Part 4a - Comparison of noise models (19 min)
Part 4b - From diffuse noise to escape noise (7 min)
Part 5 - Rate Codes versus Temporal Codes (6 min)
Игнорирайки прекратяването на огъня, пре...
Стамбул, так Стамбул (с)

2. бъди българин
3. geravna
4. zeravna
5. zeravna
6. virginia grotta
7. Виртуална библиотека
8. Къде сте
9. Песен за Нибелунгите
10. Войни на Тангра